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Abstract: Refractive index of geometrical optics is found to be a good measure of segment-

wise analysis of economic inequality under the Lorenz curve framework. For a distribution, 

when all such segment-wise index values are added, it becomes equivalent to the inequality 

measures based on the length of the Lorenz curve, which is pro-transfer sensitive, and by 

definition, additively decomposable. The analogy of refraction of light and bending of Lorenz 

curve is simple. While propagation, as a ray of light refracts according to characteristics of 

different media, so also Lorenz curve does according to concentration of wealth or income in 

different strata.  Some studies in recent past unknowingly considered the proposed index as an 

extension of Gini coefficient, and overlooked its visual appeal through Lorenz curve 

framework and that of refraction of light. The sole objective of this paper is to rediscover the 

index to make its appeal clear.       
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1. Introduction 

A composite measure of economic inequality, primarily which was derived in analogue to the 

index of refraction of geometrical optics to indicate inequality condition in each income group 

in contrast to the ideal condition, and the summation of which over n number of observations 

or groups finally appeared equivalent to the summary measures of inequality based on the 

length of the Lorenz curve, appeared initially in Majumder (2014) and in a more modified form 

in Majumder (2015).  As a ray of light bents or gets refracted while propagation according to 

characteristics of different media, so also a Lorenz curve does while passing from one stratum 

into another according to concentration of wealth or income in different strata. The extent of 

bending of a ray of light, in case of a discrete approach, is measured by Snell’s Law, which is 

a subject of study in physical science and was discussed widely in standard text books of 

physics or optics. The index that measures the extent of bending of a ray of light is known as 

index of refraction or refractive index. When the values of refractive index corresponding to 

all the strata under a Lorenz curve framework are added and standardised, the index of overall 

inequality becomes equivalent to the inequality measures proposed by Amato (1968, p. 261), 

Lombardo (1969), Scala (1969) and Kakwani (1980a, pp. 83-85), which were discussed 

adequately, among other, by Arnold (2005, 2012) and Subramanian (2015) and Majumder 

(2019). 

 Although, the composite index proposed by Majumder (2015) did not gain popularity till 

date, in past several years it drew attention of some authors like Subramanian (2015), Osberg 

(2017), and Josa and Aguado (2020). Whereas, Subramanian (2015) leaves a positive 

impression on the work considering its pro transfer-sensitive properties (obeying the principal 

of diminishing transfer), Osberg (2017) remained somewhat negative perceiving it as an 

extension of Gini coefficient with a postulation of its uneasy graphical representation as 

compared to that of the latter. The third study remains neutral with a mention of the mere 

existence of Majumder (2015) in literature as an extension of Gini coefficient.    

 As above, the primary objective of this paper is to rediscover the composite index proposed 

by Majumder (2015) to understand that: (i) it is a composite index – (a) when applied for each 

individual income group, it is equivalent to the refractive index of geometrical optics, which 

indicates extent of bending of the Lorenz curve from the egalitarian line, (b) when applied for 

the whole Lorenz curve framework, after addition of the values of the refractive index for all 

the income groups, it is equivalent to the Amato-Kakwani index, as some authors named it (see 
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Subramanian, 2015); (ii) it is not an extension of Gini coefficient; and (iii) its derivation is fully 

compatible with the visual appeal of the Lorenz curve framework and that of refraction of light.   

 The secondary objective of the paper is to remove all the pitfalls, though minor only, 

associated with the preliminary derivation and the ornamental aspect of the said index in 

Majumder (2015).  

 The paper is organised as follows. The second section is on the analogy of the graphical 

representation of refraction of light and the Lorenz curve. The third section discusses the 

concept of refractive index and the law that governs it in geometrical optics. The fourth section 

introduces the refractive inequality index for each stratum or income group under the Lorenz 

curve. The fifth section derives the overall index of inequality for the whole Lorenz curve 

framework. The sixth section is on the interpretation of the composite index. The seventh 

section examines the axioms and desirable properties of it. The eighth section poses some notes 

on the use of the measure. The ninth section presents some comparisons of it with the use of 

generalised entropy class of measures followed by conclusion and references. 

 

2. The graphical representation of refraction of light and the Lorenz curve 

[Please insert figure 1 about here] 

[Please insert figure 2 about here] 

The analogy of refraction of a ray of light and the deviation of Lorenz curve is shown with the 

help of the above figures 1 and 2 respectively. In figure 1, a ray of light refracts while passing 

from a transparent medium (say, air) into a dense medium (say, water). Figure 2 shows a Lorenz 

curve framework with five income groups or strata. It is well-understood that the fifth quintile, 

in the right-hand side, has the highest concentration of wealth or income. If one begins from 

the right-hand side top corner, one can observe that the Lorenz curve gets deviated each time 

while passing from one stratum into another. It is a simple matter of comprehension that, as 

light refracts according to the characteristics of different media, so also Lorenz curve does 

according to concentration of wealth or income in different strata. In the ideal case, when 

everyone has equal share of income or wealth, the Lorenz curve (or the ray of light) passes 

diagonally without refraction. As the property of deviation in a Lorenz curve framework is 

analogous to that of a fundamental principle of ray of light in physical science, the methodology 

associated with the latter is adopted in the former to derive a suitable measure of economic 

inequality in a scientific manner without any subjective assumptions or considerations. Angle 
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of refraction or deviation of each segment of the Lorenz curve (such as θw, as shown in figures 

1 and 2) matters in the process of derivation.  

3. Refractive index and the law that governs it    

In geometrical optics, propagation of light is governed by the Snell's law of refraction (see 

Jenkins and White 1981, pp. 9-13). It exhibits the relationship between different angles of a 

ray of light as it passes from one homogeneous transparent medium into another as follows:  

  𝑟𝑎. 𝑠𝑖𝑛( 𝜃𝑎) = 𝑟𝑤. 𝑠𝑖𝑛( 𝜃𝑤),               (1) 

where ra is the refractive index of the medium ‘a’ the light is leaving, θa is the angle of 

incidence, rw is the refractive index of the medium ‘w’ the light is entering, and θw is the angle 

of refraction. An illustration of refraction (from air to water) with usual notations is shown in 

figure 1. 

 In equation (1), we are interested to know rw, where 

 𝑟𝑤 =
sin⁡(450)

sin(⁡𝜃𝑤)
,                    (2) 

as ra = 1 (refractive index of air is equal to one), θa = 450.    

 In equation (2), the value of refractive index (rw) can be determined when sin (θw) is 

known. We try to find the value of it in the context of Lorenz curve in the next section. 

4. The refractive inequality index 

When equation (2) is considered in the context of a Lorenz curve framework (as shown in 

figure 2), ri may be termed as refractive inequality index (after replacing the suffix w by i, in 

general, for the ith stratum or income group, where i = 1, 2, …, n). The value of sin (θi) for the 

stratum or income group (after replacing the suffix w by i, as above) is nothing but the 

perpendicular divided by the hypotenuse in each respective triangle, as shown by the dotted 

and solid lines in figure 2. As we deal with the angle at the right-hand side top corner, the 

perpendicular p = proportion of population in each equally sized group, which is nothing but 

1/n, where n = number of strata or income groups, and the hypotenuse hi = part of the Lorenz 

curve. In such a case, sin⁡(𝜃𝑖) = ⁡p/ℎ𝑖 , where,  ℎ𝑖 = √𝑝2 + 𝑦𝑖
2, where yi = proportion of 

income in each group, such that ∑𝑦𝑖 = 1. If such values are put in equation (2), we get 

refractive inequality index of the form:  

 𝑟𝑖 =
𝑛

√2
. ℎ𝑖,                    (3) 

as, sin (450) = 1/√2. It says that refractive inequality index for a stratum or income group is 

nothing but the relevant part of the Lorenz curve multiplied by a constant n/√2. Further, as √2 
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= length of the Lorenz curve in ideal condition, refractive inequality index may also be 

expressed as the ratio of the part-length of the Lorenz curve in ideal condition to part-length of 

the Lorenz curve of the ith stratum.  

 The working formula of the refractive inequality index (RII henceforth) may take the 

following forms: 

  𝑟𝑖 =
𝑛

√2
. √𝑝2 + 𝑦𝑖

2. or                (4) 

  𝑟𝑖 =
1

√2
. √1 + (𝑛𝑦𝑖)2.                 (5) 

 When, income share of a particular group yi = 0, rmin = 1/√2 = 0.707. In the ideal condition, 

when p = yi = 1/n, rideal = 1.00. In the extreme case, when one person or group assumes all 

income (i.e., when yi = 1) the maximum value of the index depends upon n, as can be confirmed 

from equation (5). For example, if there are five income groups (i.e., n = 5), rmax (5) = 3.605; for 

ten income groups (i.e., n = 10), rmax (10) = 7.106; when, n = 100, rmax (100) = 70.714; if n = 1000, 

rmax (1000) = 707.107 and so on. It appears that when n is large, rmax (n) = n*rmin. It is observed 

that, the extreme value of the index (when one individual or group assumes all income) 

increases with n. In words of Theil (1967, p. 92), it may seem objectionable that the upper limit 

of the index increases when the number of individual or group increases. Following the answer 

he provided in case of the entropy measure, we may also accept an index value of 7.106 when 

nine out of 10 persons (90 %) assume no income and an index value of 70.714 when 99 out of 

100 persons (99%) assume nothing.  

 In order to gather empirical evidence, the World Income Inequality Database of 06 May 

2020 (UNU-WIDER, 2020) is explored1. It is found that in case of quintile distributions with 

6846 valid cases, the range of ri is 0.707 to 2.963. In case of decile distributions of the same 

database with 6567 valid cases, ri varies from a minimum value of 0.707 to the maximum value 

of 5.017.    

5. The overall index of inequality for the whole Lorenz curve framework 

When values of the RII for all the strata are added together, from equation (2) we may 

comprehend that in the right-hand side, we will have ∑hi, which is nothing but the complete 

length of the Lorenz curve (as hi represents part of that). In the left-hand side, we will have ∑ri. 

Let ∑hi = M and ∑ri = X, then from equation (2) we get: 

 𝑋 =
𝑛

√2
𝑀.                     (6) 

 
1 Relevant SPSS command codes (for row-wise data) are presented in sections C and D of the Annexure – I. 



6 
 

We know that the length of the Lorenz curve varies between √2 and 2. It implies that value of 

X varies between n and n√2. After rescaling the above in ‘0 to 1’- point scale, we get: 

  𝑅 =
𝑋−𝑛

𝑛√2−𝑛
.                    (7) 

 After a simple manipulation of the above [if we put the value of X from equation (6) to 

equation (7) and simplify both the denominator and numerator], the overall refractive 

inequality index (ORII henceforth) will take the following form: 

 𝑅 =
𝑀−√2

2−√2
 .                    (8)  

 One may confirm that the above expression is nothing but the inequality measure based on 

the length of the Lorenz curve, as proposed by Amato (1968, p. 261), Lombardo (1969), Scala 

(1969) and Kakwani (1980a, pp. 83-85). 

 In order to suggest a working formula of the ORII, we may re-write M in equation (8) as 

follows: 

 𝑅 =
(1/𝑛µ)∑ (µ2+yi

2)
1
2n

i=1 −√2

2−√2
 ,                (9) 

where  µ = average income share = 1/n. A complete derivation of M, as above, is available in 

Majumder (2019), which was derived to give it a similar shape as done by Kakwani (1980a, p. 

84) for a continuous function:  

 

 𝐿 =
1

(2−√2)
[
1

µ
∫ √µ2 + 𝑥2𝑓(𝑥)𝑑𝑥 − √2
∞

0
],               (10) 

 

where  L = ‘A new inequality measure’ (as mentioned by him), which is based on the length 

of the Lorenz curve. Presentation of the above two formulae in their particular forms is 

purposive to define some basic properties of the index in the seventh section. 

6. Interpretation of the composite index  

Interpretation of the refractive inequality index (RII) and its values need some special 

mentions. As an index value of 1.00 represents the ideal condition, it is desirable for each of 

the strata (where proportion of population in a group is equal to income share of that group, 

i.e., p = yi).  Any deviation of the value of RII from 1.00 is undesirable. Any value of it from 

less than 1.00 is strictly undesirable (where proportion of population is greater than income 

share of that group, i.e., p > yi). Standard literature in optics maintains that an index value of 

less than 1.00 does not represent a physically possible system (Nave, 2012). Further, in case of 

light, a refractive index value of less than 1.00 represents an ‘anomalous refraction’ (Feynman, 

2011, p. 33-9). A phenomenon, which is anomalous in the field of physical science, has 



7 
 

relevance in the field of economics of inequality too. Thanks to our latent feelings, we also 

realise that an income or wealth distribution with cases of p > yi (as mentioned above) is 

anomalous, which warrants redistribution of resources favouring the worse-off ones to correct 

the situation. An index value of more than 1.00 is also undesirable, as it indicates higher 

concentration of income or wealth in that group.  

 As above, one should read the RII and interpret its values in contrast to its value in the ideal 

condition, i.e., 1.00. For example, when it has a value of 0.71, the inequality condition of the 

respective income group or the stratum rests 0.71 points below the ideal condition; when it 

assumes a value of 1.42, the inequality condition of the income group or the stratum remains 

0.42 points above the ideal condition. So, when index value increases from its minimum (0.71) 

to that of the ideal condition (1.00), it is good and desirable. Similarly, a fall in index value 

from its theoretical maximum (say, 3.61 for n = 5) towards that of the ideal condition (1.00) is 

good and desirable.   

 Also, one may imagine (in continuous case) that there is a point on the Lorenz curve where 

the slope of the tangent line is equal to that of the diagonal one. This may be called as the point 

of inflection, as it divides the population (and the Lorenz curve) into two groups (sections) with 

an RII value of less than 1.00 in the left and more than 1.00 in the right. So, an increase in value 

of RII up to 1.00 in the left, and a decrease in value of RII to 1.00 in the right indicating a 

redistribution of resources from the right segment of the Lorenz curve to the left are always 

desirable. 

 The overall refractive inequality index (ORII) varies from 0 to 1.00. While 0 means absence 

of inequality, 1.00 indicates maximum inequality. In the empirical exercises, it was presented 

after multiplying by 100. 

7. Axioms and desirable properties of the RII & ORII 

A good measure of economic inequality should have certain desirable properties (which are 

also known as axioms), from which it is possible to understand about how a measure behaves 

in responses to changes in its parameters.  However, Kakwani (1980), Arnold (2012) and 

Subramanian (2015) very systematically proved most of the desirable properties of the index 

ORII (which is based on the length of the Lorenz curve) mathematically. In order to avoid 

replication of those mathematical derivations, this paper goes for numerical examples to 

understand the desirable properties of the said index. Following Bellù and Liberati (2006), 

primarily, five main axioms are considered: (i) the principle of transfers (also known as the 

Pigou-Dalton transfer principle), (ii) scale invariance, (iii) translation invariance, (iv) the 
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principle of population replication, and (v) decomposability. Further, after testing the Pigou-

Dalton principle of transfer, the workability of ORII is also tested in the context of some other 

essential properties, such as, the principle of pro transfer-sensitivity, as discussed by 

Subramanian (2015), and that of the principle of diminishing transfer, as discussed by Kolm 

(1976) and others. 

 In order to test whether the RII and ORII obey the axioms, this paper presents some 

numerical examples in tables 1 and 2 below2. Table 1 is self-explanatory. The first column 

shows individuals or income groups. The second column shows incomes (in any standard unit). 

The next five columns show transfer of incomes as per the first three principles under 

discussion. For example, the third, fourth and fifth columns are considered to test the principle 

of transfers. The third column shows that a transfer of 200 units of income takes place between 

the second poorest and the poorest groups. The fourth column shows the same amount of 

transfer between the richest and the second richest groups. The fifth column shows a transfer 

from the second richest group to the second poorest group. The sixth column shows an 

augmentation of income in each group by 20 per cent. The seventh column shows addition of 

income by 300 units in each group. The final column depicts a new income distribution (to test 

the fourth principle), which is an exact replication of the first one with ten individuals or groups 

instead of five.  

 Table 2 displays: (i) the values of the RII (according to individuals or groups, as in table 

1), (ii) column-wise summation of index values, and (iii) and the ORII, when the values of the 

seventh column are standardised to put in ‘0 to 1’- point scale.  

[Please insert table 1 about here] 

[Please insert table 2 about here] 

7.1. The Pigou-Dalton principle of transfers 

One may consider that a rank-preserving progressive transfer of income takes place between a 

pair of individuals or groups.  In such a situation, Pigou-Dalton transfer principle requires a 

fall in the index value and vice-versa. The second column of table 1 shows an initial 

distribution. The third column of it shows a transfer of 200 units of income from the second 

poorest group to the poorest one. It can be seen that after such a transfer, the values of both the 

Gini coefficient and the ORII decreased from 26.40 to 25.60 and from 6.99 to 6.50 respectively. 

 
2 Relevant SPSS command codes (for column-wise data) are presented in sections A and B of the Annexure-I. In 

section B, the formula for computing Gini coefficient was proposed by Majumder and Kusago (2020). 
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The numerical example shows that both the Gini coefficient and the ORII obey the Pigou-

Dalton principle of transfer.  

 The same exercise is repeated again for the data in the fourth column, where a transfer of 

the same amount (200 units) took place between the richest and the second richest groups or 

individuals. After such a progressive transfer, the values of both the Gini coefficient and the 

ORII decreased from 26.40 to 25.60 and from 6.99 to 6.87 respectively. The numerical example 

re-confirms that both the Gini coefficient and the ORII obey the Pigou-Dalton principle of 

transfer.  

 As above, one may realise that in the third column of table 1, thanks to transfer of income, 

the poorest group is benefitted.  On the contrary, in the fourth column, thanks to the same 

amount of transfer, the second richest group is benefitted. Although the contexts of two 

transfers are completely different, Gini coefficient (25.60) remains indifferent between the two 

transfers. So, the above two examples imply that Gini coefficient is transfer-neutral. On the 

contrary, ORII is pro transfer-sensitive meaning more sensitive to transfers at the lower levels 

of income (as the decrease in ORII is higher in the former than in the latter).  

 To put the matter technically, one may imagine that a given rank-preserving progressive 

transfer of income takes place between two pairs of individuals or groups such that the 

individuals or groups in each pair are separated by both a fixed number and a fixed income. In 

that case, following Subramanian (2015), we can say that an inequality measure is anti transfer-

sensitive / transfer-neutral / pro transfer-sensitive, depending on whether the diminution in 

index value following the transfer between the poorer pair of individuals is lesser than / the 

same as / greater than the diminution in index value following the transfer between the richer 

pair of individuals.  

 As above, it may be postulated that an inequality measure (say, Z), which satisfies the 

Pigou-Dalton transfer axiom, will be ante transfer-sensitive if Z(b) > Z(c) > Z(d); transfer-

neutral if Z(b) > Z(c) = Z(d); and pro transfer-sensitive if Z(b) > Z(d) > Z(c), where (c) and (d) 

are two different forms of the initial distribution (b), as shown in the second, third and fourth 

columns of table 1. In case of Gini coefficient, G(b) [= 26.40] > G(c) = G(d) [= 25.60]: the 

Gini coefficient is transfer-neutral. In case of the overall refractive inequality index, ORII (b) 

[= 6.99] > ORII (d) [= 6.87] > ORII (c) [= 6.50]: ORII is pro transfer-sensitive.  

 Theoretically, we know from a lemma (see Kakwani 1980a, p. 67) that any inequality 

measure that is equal to the arithmetic mean of a strictly convex function of income, satisfies 

Pigou-Dalton transfer axiom. Equation (9) expressing the ORII or equation (10) expressing the 

‘new inequality measure’ of Kakwani (1980a, p. 83), shows that the index is the arithmetic 
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mean of a strictly convex function of income, which implies that it is sensitive to transfers at 

all levels of income. In regard to transfer-sensitivity property, Kakwani (1980a, pp. 84-85) 

proved another lemma to show that the index (L) he proposed, attaches higher weight to 

transfers at the lower end than at the middle and upper ends of a distribution. The importance 

of such a weighting system has also been discussed by him in another occasion (see Kakwani, 

1980b). However, according to him, unlike the (area-based) Gini coefficient, this measure 

(based on the curve length) is more sensitive to transfers at the lower levels of income, making 

it particularly applicable to problems such as measuring the intensity of poverty. As, ORII is 

equivalent to the ‘new inequality measure’ of Kakwani (1980, p. 84), properties of the latter 

are equally applicable for the former (i.e., for the ORII).  

 In particular, the point of giving more weight to transfers that decreases monotonically as 

income increases, has been discussed with great interest by Kolm (1976), Mehran (1976), 

Chateauneuf, Gajdos and Wilthien (2002), Rohde (2008) and others. In his seminal paper, 

Kolm (1976) discussed about the issue under the title of ‘the principle of diminishing transfers’. 

He postulated that after having satisfied with the Pigou-Dalton principle of transfer, one may 

go a step further and value more such a transfer between persons with given income difference 

if these incomes are lower than if they are higher. Thus, he would prefer to transfer one pound 

from a person who earns 500 pounds a month to another one who earns only 100, than to 

transfer one pound from a 900 pounds earner to a person who already earns 500 pounds. In line 

with the same thought, if we were asked that of the two transfers (as cited above in the context 

of table 1), which one do we prefer – obviously we will favour (c) over (d), as comparatively 

poorer people are benefitted in that than in the latter. With this level of mindset and priority, 

one may obviously find it difficult to continue with Gini coefficient in all occasions, as it 

remains transfer-neutral. On the good side, the ORII, which is equivalent to the inequality 

measures based on the length of the Lorenz curve, remains in advantageous position with its 

built-in weighting system on transfers favouring the worse-off ones.  

 Table 2 shows values of the refractive inequality index (RII) corresponding to six income 

levels in each of the second through seventh columns of table 1. We know from section 6 that 

when value of ri < 1.00 under the left segment of the Lorenz curve, it is strictly undesirable. An 

increase in value of ri up to 1.00 is desirable. It is seen that after the first transfer from the 

second poorest group to the poorest group, r1 increased from 0.75 to 0.78. At the same time, r2 

also decreased from 0.84 to 0.81. As the initial value of r2 < 1.00, a decrease in income share 

results further decrease in the value of r2, which is not desirable. However, as the poorest group 
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is benefitted and as ORII attaches more weight to transfer at the lower levels of income, ORII 

decreased from 6.99 to 6.50.  

 When transfer of income takes place from the richest group to the second richest group (as 

in the fourth column of table 1), r5 decreases from 1.36 to 1.30 in table 2, which is desirable. 

At the same time, for increase in income share in the fourth group, r4 increases from 1.19 to 1. 

25. As the initial value of r4 > 1.00, a further increase in that is not desirable. However, as a 

result of overall change, ORII decreased from 6.99 to 6.87.     

 We know that the point of inflection (as discussed in section 6) divides the population (and 

the Lorenz curve) into two groups (sections) with an RII value of less than 1.00 in the left and 

more than 1.00 in the right. When transfer of income takes place from one such group to 

another, RII also maintains the spirit of the Pigou-Dalton transfer axiom, as long as ri ≤ 1.00 in 

the left and ri ≥ 1.00 in the right respectively. The fifth column of table 1 shows such a transfer 

and one may confirm from the fifth column of table 2 that after such a transfer, r4 decreased 

from 1.25 to 1.13 indicating a decrease in inequality under the right section of the Lorenz curve. 

At the same time, under the left section of the Lorenz curve too, r2 increased from 0.84 to 0.88 

indicating a decrease in inequality. As a result of the overall decrease in inequality conditions 

under the both segments, the ORII also decreased from 6.99 to 6.24. 

7.2. The principle of scale invariance 

The property of scale invariance requires the inequality measure to be invariant to equi-

proportional changes of the original incomes. For example, from the sixth column of table 1, 

one may understand that the original incomes (as in the second column of table 1) are multiplied 

by 1.2, to observe a 20% increase for each group / individual. After such a change, one may 

see that inequality measures in tables 1 and 2 (the sixth column in both) remain the same. This 

proves that ORII and its components satisfy the property of scale invariance.  

7.3. The principle of translation invariance 

The property of translation invariance requires the inequality measure to be invariant to 

uniform additions or subtractions to original incomes. One may see that in the seventh column 

of table 1, income for each group is augmented by 300 units as compared to the original 

incomes displayed in the second column of the same table. Results show that ORII and its 

components do not satisfy the property of translation invariance. One may realise that after the 

augmentation of income by a fixed unit, income shares under the left section of the Lorenz 

curve increased and the same under the right section of the Lorenz curve decreased. As a result, 

Gini coefficient and ORII also decreased. 
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7.4. The axiom of the principle of population 

The axiom of the principle of population requires the inequality measure to be invariant to 

replications of the original population. The final column of table 1 shows such a replication 

and results show that both the Gini coefficient3 and ORII satisfy the axiom of the principle of 

population.  

7.5. The axiom of decomposability 

An index of inequality may be said to be additively decomposable if for any grouping total 

inequality can be written as the sum of: (i) a between-group component, and (ii) a within-group 

component. This property allows the unambiguous measurement of the contribution of a 

particular grouping (or variable) to overall inequality (Anand, 1983, p. 87, 319).  With some 

level of critical reasoning, one may realise that if grouping is not done before testing the axiom, 

the point of considering the second component of ‘within-group’ inequality will become void. 

As grouping of observations causes some amount of shortfall in a summary measure (say, in 

Gini coefficient) as compared to that computed from micro-data (see Majumder and Kusago, 

2018) because of ignoring the within group inequality, the ‘within-group component’ is 

considered under the axiom. If one computes a summary measure (say, Gini coefficient) for n 

= 10, and goes for testing the axiom of decomposability without any grouping, she/he needs to 

consider the between-group component only; the question of within-group component does not 

arise. One may realise that the component of within-group inequality loses its point, when the 

axiom of decomposability is considered in the context of the ORII too. ORII is obtained after 

adding inequality condition of each individual or group under a study. So, ORII is additively 

decomposable, by definition. The matter can be presented in the following way. 

 𝑂𝑅𝐼𝐼 ≡ ∑ 𝑟𝑖 =⁡ 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛.             (11) 

 It is shown, as above, that ORII (or equivalently the Amato-Kakwani inequality index, 

which is based on the length of the Lorenz curve) satisfies most of the desirable properties to 

be a good measure of economic inequality. Most importantly, it satisfies the principles of pro-

transfer-sensitivity (or that of the diminishing transfer) and decomposition. It was mentioned 

by Chateauneuf, Gajdos and Wilthien (2002) that the Atkinson, Kolm and Theil indices respect 

the principle of diminishing transfer. According to Rohde (2008), the introduction of the 

diminishing transfer property and decomposition principle has reduced the range of viable 

indices to a subset of the Generalised Entropy class of measures. However, the ORII and 

 
3 When the formula of Gini coefficient is obtained for small n following the ‘principle of mean difference without 

repetition’ as proposed by Kendall (1948, p. 42), or simply when it is corrected for small n replacing n2 in the 

denominator by n*(n-1), it does not satisfy this axiom. 
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equivalently the Amato-Kakwani inequality index will also come under this category, as they 

satisfy both the above-mentioned crucial properties. 

8. Notes on the use of RII and ORII 

8.1. The composite nature of the index 

Thanks to the detailed derivation and discussions, it is now clear that the index under 

consideration is a composite one – it can be applied in parts and as a whole. 

 When applied in parts, one may obviously raise question that while the income distribution 

table is available, what is the point of using refractive inequality index (RII) for each individual 

or income group or stratum? Authors like Piketty (2014, p. 266) suggested using of income 

shares from distribution tables to evaluate inequality conditions of individuals or groups. In 

order to supplement the result of a summary measure, Osberg (2017) suggested to examine 

visually the relevant section of the Lorenz curve. However, one may realise that use of an 

income share either from a distribution table or from a Lorenz curve to understand inequality 

condition, does not complement the use of RII for the same purpose. Summation of income 

shares (say, for a quintile distribution) does not lead to an inequality measure (as it is always 

equal to one), although the same (summation) in case of RII leads to a measure of economic 

inequality (such as, ORII or Amato-Kakwani inequality index). Also, a simple visualisation of 

figures from income distribution table or from Lorenz curve from normative perspective may 

be misleading if not quantified (with weights) in a proper manner.  

 Thanks to curiosity, the relationships between income share and refractive inequality index 

for quintile distributions are checked using data from the World Income Inequality Database 

of 06 May 2020 (UNU-WIDER, 2020)4 and presented below. 

[Please insert figure 3 about here] 

[Please insert figure 4 about here] 

 One may examine that in figure 3, the relationship between the refractive inequality index 

(r1) and income share (y1) of the first group is quadratic. It implies that conversion rate of 

income share into index value is not constant throughout. It is lower at lower levels of income 

share and it gradually increases with the increase in income share. So, use of income share to 

explain inequality condition conveys different meaning than that of using the refractive 

 
4 Please see footnote 1. 
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inequality index for the same purpose. One may continue to check the said relationships (from 

figure 4 to figure 6) and may confirm that this phenomenon holds to be true up to the fourth 

income group. In case of the final income group of the quintile distribution, the relationship 

between r5 and y5 is linear, as shown in figure 7. It implies that the conversion rate of income 

share into index value is constant. In case of a quintile distribution, meaning of using the final 

income share or the corresponding RII value to read the inequality condition, is the same.  

[Please insert figure 5 about here] 

[Please insert figure 6 about here] 

[Please insert figure 7 about here] 

 The same exercise was repeated for the decile income or consumption distributions 

available in the World Income Inequality Database of 06 May 2020 (UNU-WIDER, 2020)5 

and found similar results (not presented in the paper). To be more specific, r i and yi are 

quadratically related with an adjusted R-square value of 1.00 for each decile group for all i = 

1, 2, …, 9. For the 10th income group, the relationship is perfectly linear with an adjusted R-

square value of 1.00.  

 It appears from the above that use of refractive inequality index for first (n-1) groups for 

quintile and decile distributions does not complement the use of simple income shares to 

explain inequality conditions. Uses of the nth income share and the refractive inequality index 

for the nth group convey the same meaning. One may realise that uses of RII and ORII, instead 

of simple use of individual income shares, are more appropriate to satisfy the propositions put 

forward by Piketty (2014, p. 266) and Osberg (2017) on the subject matter.    

8.2. RII and ORII are not extensions of the Gini coefficient 

Neither the refractive inequality index (RII) nor the overall refractive inequality index (ORII) 

is an extension of the Gini coefficient. RII is an angle-based measure, which was derived in 

analogue to the refractive index of geometrical optics. Angle of deviation of a particular 

segment of the Lorenz curve with respect to the egalitarian line is the key issue that matters in 

derivation (instead of area covered by the egalitarian line and the Lorenz curve). Moreover, 

RIIs have no equivalent counterparts in Gini coefficient, as the latter is not additively 

decomposable (see Anand, 1983, p. 87). When RIIs are added and standardised, it becomes 

 
5 Ibid. 
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equivalent to the inequality measures based on the length of the Lorenz curve. Although not 

widely popular, the inequality measures based on the length of the Lorenz curve has distinctive 

place in literature. Authors who proposed it or discussed about it (as cited in section 5), have 

never considered it as an extension of Gini coefficient.   

 In Majumder (2015), some empirical exercises were presented to show that the Gini 

coefficient and ORII are perfectly correlated by quadratic equation with adjusted R-square 

value of 1.00. However, the intension was not to mean that the latter is an extension of the 

former. Mathematically, when in quadratic relationship, rate of change in one variable with 

respect to the other is not constant throughout – meaning that workability of each is different. 

In such a situation, the use of one does not perfectly substitute the use of the other.  

 An ornamental dimension was also added to Majumder (2015), where refractive index 

values of precious gem stones were compared with the same of different income groups 

respectively in order of hierarchy (in descending order). Surprisingly, it was found that the 

refractive inequality index of the richest group of a highly unequal quintile distribution is closer 

to that of a piece of a diamond (2.42). The paper tried to compare the same of other income 

groups too (in order of magnitude of the index value) with the refractive index of other precious 

gem stones in order of their hierarchy. Although, such a presentation was too attractive to some 

readers, others raised question that whether one needs to understand gemmology to read the 

work of Majumder (2015)6. The simple and brief answer is ‘no’. One may ignore the 

ornamental dimension of Majumder (2015) summarily. It will have no impact to study 

inequality conditions purely under the Lorenz curve framework.    

8.3. Visual appeal of RII and ORII 

Visual appeal of the Gini coefficient is solely related to that of the Lorenz curve. The same of 

the RII and ORII is related to that of the Lorenz curve and additionally to that of the refraction 

of light, as illustrated in figure 1. Their approach of derivation is fully compatible not only with 

the visual appeal of the Lorenz curve framework in reality, but also one may go beyond it with 

some fantasy considering the unit-square of the Lorenz curve framework as a World under the 

Sun, where the egalitarian line is nothing but a ray of light that touches everyone uniformly 

without any discrimination or refraction. When uniformity breaks, the ray of light refracts as 

Lorenz curve does in reality. So, the graphical illustrations of the RII and ORII are more 

optically appealing and their academic spirit is in no way compromised. 

 

 
6 Most of such comments received during oral presentation in different occasions and by emails.  
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9. A comparison with some Generalised Entropy class of measures 

As a background exercise of this paper, the workability of the following indices is tested7 as 

per data available in the first four columns of table 1. First, Atkinson inequality index was 

considered (see Atkinson, 1970). It works with an inequality aversion factor (say ε), where ε 

varies from 0 to ∞. One may choose appropriate value of ε to make it pro transfer-sensitive. 

According to this measure, higher values of ε indicate more weight to transfers at the lower 

end of a distribution and (simultaneously) less weight to transfers at the upper end (Atkinson 

1970). The recommended and the commonest used values of ε are: 0.5, 1, and 2 (Anand 1983, 

pp. 84-85). In the present exercise, the values of ε considered are: 0.25, 0.5, 1, 2 and 10. Index 

values are displayed in table 3. All the first four variants of Atkinson index are pro-transfer 

sensitive. One may verify that visibly for all ε ≤ 6, measures are pro transfer-sensitive. As ε 

increases thereafter, the weight given at the upper end virtually becomes nil. At least visibly, 

Atkinson index with ε = 10 seems to be the classical example of Rawlsian function mini {yi} 

as ε → ∞, where interest of the poor only is considered ignoring completely the transfers among 

rich (Atkinson 1970; Anand 1983, p. 83). So, when we say that Atkinson index satisfy the 

principle of diminishing transfer, we need to understand that practically, we may go up to ε = 

5. However, when ε ≥ 1, Atkinson index becomes undefined for zero share of income in one 

group. In order to avoid such complicacies, one needs to consider a variant of Atkinson index 

with 0 < ε < 1. It is found after doing an empirical exercise using the decile dataset (with 6567 

observations) from the World Income Inequality Database of 06 May 2020 (UNU-WIDER, 

2020)8 that the Atkinson index with ε = 0.25 maintains a quadratic relationship with the ORII 

(and hence with the Amato-Kakwani inequality index) with an adjusted R-square value of 1.00.  

 Secondly, Theil’s entropy index T (see Theil, 1967, pp. 91-95) and Theil’s second measure 

L (see 1967, pp. 125-127), and in particular the Generalised Entropy Measure, as proposed by 

Shorrocks (1980) with the inequality aversion factor α ≥ 2 were considered.  The inequality 

aversion factor of it (say α), varies from − ∞ to + ∞. It is to be remembered that α = 0 and α = 

1 correspond to Theil’s second measure L and Theil’s entropy index T respectively. The 

commonest values used for this inequality aversion factor are: -1, 0, 1 and 2 respectively. In 

the present exercise, three values of α are considered: 0, 1 and 2. Results are presented in table 

 
7 Relevant SPSS command codes (for column-wise data) are presented in sections E, F and G of the Annexure-I. 
8 Relevant SPSS command codes (for row-wise data) are presented in section H of the Annexure-I. 
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3. It can be seen that Theil’s L and Theil’s T are pro transfer sensitive. The variant with α = 2 

is transfer-neutral. The variants with α > 2 are ante transfer-sensitive, as discussed under the 

sub-section 7.1. It is to be noted that the Theil’s L (with other variants of Generalised Entropy 

Measures with α < 0) is undefined for zero share of income in a group. So, one may go with 

the Theil’s T, which is pro transfer-sensitive and additively decomposable in weak sense of the 

term (see Anand, 1983, p. 309).  It also maintains a quadratic relationship with ORII (and hence 

with the Amato-Kakwani inequality index) with an adjusted R-square value of 0.998, as tested 

with the same UNU-WIDER data9. 

 Thirdly, extended Gini coefficient is considered (see Yitzhaki and Schechtman, 2005). 

Extended Gini coefficient works with an inequality aversion factor v, which varies from 0 

to ∞. When v = 2, it becomes equivalent to the Gini coefficient. The weigh ting scheme of 

the index is similar to that of Atkinson index. The present exercise considers four values of 

v: 2.5, 3, 4, and 10. Results are displayed in table 3, which also follow similar pattern as 

they do in the case of Atkinson index. The first three are pro transfer-sensitive. Extended 

Gini coefficient with v = 10, conveys similar meaning as the Atkinson index with ε = 10 

does. After repeating similar empirical exercises (as above)10, it is found that Extended Gini 

coefficient maintains a power relationship with ORII (and hence with the Amato-Kakwani 

inequality index) with an adjusted R-square value of 0.997.  

 As above, those who prefer to work with ORII (or equivalently Amato-Kakwani inequality 

index) may also consider working with Atkinson index with ε = 0.25, and/or Theil’s T, and/or 

Extended Gini coefficient with v = 2.5. If, however, someone: (i) tries to avoid arbitrary 

selection of weights to transfer, (ii) wants to follow the principle of pro transfer-sensitivity (or 

that of diminishing transfer), and decomposability in strict sense of the term, she/he may go 

with the ORII. 

[Please insert table 3 about here] 

10. Conclusion 

Refractive inequality index, which was derived in analogue to the index of refraction of 

geometrical optics and the overall refractive inequality index, which is equivalent to the 

inequality measures based on the length of the Lorenz curve, may be used to study inequality 

 
9 Ibid. 
10 Ibid. 
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conditions along different segments of the Lorenz curve as well as for the whole framework 

respectively.  
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(Figures) 

 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

            

Figure 1. An illustration of refraction of light (with vertical normal) 

     

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

      Figure 2. An illustration of Lorenz curve framework with five groups 
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Figure 3. Relationship between r1 & y1 using the WIID of 6 May 2020; n = 6846  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 4. Relationship between r2 & y2 using the WIID of 6 May 2020; n = 6846 
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Figure 5. Relationship between r3 & y3 using the WIID of 6 May 2020; n = 6846 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 6. Relationship between r4 & y4 using the WIID of 6 May 2020; n = 6846 

 

 

 
Income share of group 3 (y3) 

R
ef

ra
ct

iv
e 

in
eq

u
al

it
y
 i

n
d
ex

 o
f 

g
ro

u
p
 3

 (
r 3

) 

r3=0.68+0.61*y3+5.01*y3*y3 

Adj. R-Square=1.00 

 

 
Income share of group 4 (y4) 

R
ef

ra
ct

iv
e 

in
eq

u
al

it
y
 i

n
d
ex

 o
f 

g
ro

u
p
 4

 (
r 4

) 

r4=0.63+1.24*y4+3.12*y4*y4 

Adj. R-Square=1.00 



24 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 7. Relationship between r5 & y5 using the WIID of 6 May 2020; n = 6846 
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Tables 

 

Table 1. Numerical examples to test properties of the Overall Refractive Inequality Index 

(ORII) 

Individuals 

or Groups 
Incomes Principle of transfers 

Sale 

invariance 

Translation 

invariance 

Principle 

of 

population 

 (b) (c) (d) (e) (f) (g)  

       700 

       700 

       1300 

       1300 

       2000 

1 700 900 700 700 840 1000 2000 

2 1300 1100 1300 1500 1560 1600 2700 

3 2000 2000 2000 2000 2400 2300 2700 

4 2700 2700 2900 2500 3240 3000 3300 

5 3300 3300 3100 3300 3960 3600 3300 

Mean income 2000 2000 2000 2000 2400 2300 2000 

Total income 10000 10000 10000 10000 12000 11500 20000 

G* 26.40 25.60 25.60 24.80 26.40 22.96 26.40 

ORII* 6.99 6.50 6.87 6.24 6.99 5.21 6.99 

*After multiplying by 100; G: Gini coefficient; ORII: Overall Refractive Inequality Index 

 

Table 2. The components of the Overall Refractive Inequality Index 

Distribution 

/Index 
(b) (c) (d) (e) (f) (g) 

r1 0.75 0.78 0.75 0.75 0.75 0.77 

r2 0.84 0.81 0.84 0.88 0.84 0.86 

r3 1.00 1.00 1.00 1.00 1.00 1.00 

r4 1.19 1.19 1.25 1.13 1.19 1.16 

r5 1.36 1.36 1.30 1.36 1.36 1.31 

∑ri 5.15 5.14 5.14 5.13 5.15 5.11 

ORII 6.99 6.50 6.87 6.24 6.99 5.21 

ri: Refractive inequality index (RII), * After multiplying by 100  
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Table 3. A comparison with the generalised class of measures (using the first four income distributions of table 1) 

Index/Distribut

ion 

Atkinson index Generalised Entropy 

Measure 

Extended Gini coefficient 

ε = 0.25 ε = 0.50 ε = 1 ε = 2 ε = 10 Theil’s 

L 

Theil’s 

T 

α = 2 v = 2.5 v = 3 v = 4 v = 10 

(b) 3.00 6.13 12.71 25.84 58.16 13.59 11.68 10.90 23.86 21.12 16.22 3.63 

(c) 2.75 5.57 11.23 21.72 47.09 11.91 10.87 10.50 22.86 20.00 15.04 3.13 

(d) 2.94 6.03 12.55 25.71 58.16 13.42 11.41 10.50 23.5 20.96 16.19 3.63 

(e) 2.68 5.51 11.55 24.20 58.15 12.27 10.44 9.70 22.36 19.84 15.39 3.59 

 


